Some Spaces in Which Best Uniform Approximation is Never Possible

Alfred P. Hallstrom

Department of Mathematics, University of Washington, Seattle, Washington 98195 Communicated by E. W. Cheney

Let X be a compact Hausdorff space and A a Banach subspace of $C_R(X)$ in the uniform norm, with unit. Let $f \in C_R(X)$ such that $0 < d = \inf_{g \in A} ||f - g||$. Let μ be a regular Borel measure on X such that $||\mu|| = 1$, $\mu \perp A$ and $\mu(f) = d$. Let M(A, f) be the set of all such measures.

Remark. If $\langle \text{supp } \mu \rangle$ is connected for some $\mu \in M(A, f)$, then f has no best approximation in A.

Proof. Let g be a best approximation. Then |g - f| = d on $\langle \text{supp } \mu \rangle$, so g - f = d (or -d, we assume d) on $\langle \text{supp } \mu \rangle$. Thus

$$d=\int f\,d\mu=\int (f-g)\,d\mu=\int -d\,d\mu=0,$$

a contradiction which establishes the result.

We proceed now to find compact plane sets, X, and Banach spaces $A \subset B \subset C_R(X)$ such that best uniform approximations of elements of B by elements of A never exist.

We first collect some well known facts from the theory of rational approximation. Let X be a compact plane set such that the interior of X, X^0 , is connected and $\langle X^0 \rangle = X$. Let R(X) be the uniform closure on X of the space of rational functions with poles off X. Let K be the topological boundary of X. We assume m(K) = 0 where m is Lebesque area measure. Let ν be a regular Borel measure in $R(X)^{\perp}$. Set

$$\hat{\nu}(z) = \int \frac{1}{\zeta - z} d\nu(\zeta).$$

Then it is well known [1, Chapter 2] that $\nu = 0$ if and only if $\hat{\nu} = 0$ a.e. (m) and that $\hat{\nu} = 0$ on the complement, X^c , of X. Suppose that $K \neq \langle \text{supp } \nu \rangle$. (Since the Shilov boundary of R(X) is a subset of K, we may assume $\langle \text{supp } \nu \rangle \subset K$.) Then there must be a relatively open subset of K and hence

an open set U such that $U \cap \langle \text{supp } \nu \rangle = \emptyset$, $U \cap X^0 \neq \emptyset$, and $U \cap X^e \neq \emptyset$. But $\hat{\nu}$ is clearly analytic off $\langle \text{supp } \nu \rangle$ and hence must vanish on X^0 . We summarize the above in the following lemma.

LEMMA. Let X be a compact plane set such that X^0 is connected, $\langle X^0 \rangle = X$ and m(K) = 0. Then either $\nu = 0$ or $\langle \text{supp } \nu \rangle = K$.

Now let $D(X) = \{f \in C_R(X): f \text{ is harmonic on } X^0\}$, and let A be the uniform closure on X of $\{u: u = \operatorname{Re} f, f \in R(X)\}$.

THEOREM. Let X be a compact plane set such that X^0 is connected, $\langle X^0 \rangle = X$, m(K) = 0 and K is connected. Let $f \in D(X)$. If $f \notin A$, there is no best uniform approximation to f from A.

Proof. Let ν be a real measure in M(A, f). Then $\nu \perp R(X)$ so $K = \langle \text{supp } \nu \rangle$. If $g \in A$ is a best approximation to f, then g - f is constant on $\langle \text{supp } \nu \rangle$ and hence on K. By the maximum modulus principle g - f is constant on X and hence $f \in A$, a contradiction. Q.E.D.

It is not difficult to find compact plane sets satisfying the hypotheses of Theorem 2 and such that $D(X) \neq A$. For example, set

$$X = \langle \Delta \rangle (0, 1) \Big\langle \bigcup_{i=1}^{\infty} \Delta(a_i, r_i),$$

where $0 < a_i < 1$, $r_i < \frac{1}{2}$, $1 \le i < \infty$, and $\langle \Delta \rangle (a_i, r_i) \cap \langle \Delta \rangle (a_i, r_i) = \emptyset$ for $i \ne j$. By choosing a_i and r_i appropriately we can insure that the set of nonregular (in the sense of Wiener) points on $K \cap [0, 1]$ has positive length,

and such that K is connected. Then $A \neq D(X)$ [2, p. 31]. We are especially interested in the following situation: Let

$$A(X) = \{f \in C(X): f \text{ is analytic on } X^0\}.$$

Conjecture. If $f \in A(X)$ and $f \notin R(X)$ then f has no best uniform approximation in R(X).

If best uniform approximation exists it is unique. The conjecture is somewhat in contrast to the result of Hintzman in [3, pp. 1062–1066].

References

- 1. T. GAMELIN, "Uniform Algebras," Prentice-Hall, Englewood Cliffs, NJ, 1969.
- T. GAMELIN AND H. ROSSI, Jensen measures and algebras of analytic functions, "Function Algebras" (F. Birtel, Ed.), pp. 15-35, Scott Foresman and Co., New York, 1966.
- 3. W. HINTZMAN, Best uniform approximations via annihilating measures, Bull. Amer. Math. Soc. 76 (1970), 1062–1066.